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1 Introduction

The Feynman diagram expansion is a very inefficient approach to gauge theory amplitudes.

We are often interested only in on-shell quantities but Feynman diagrams also carry a lot of

off-shell information. On-shell scattering amplitudes in gauge theories can be remarkable

simple. For example, the scattering of two gluons with negative helicity and any number

of gluons with positive helicity is given by the compact Parke-Taylor formula [1]. This

structure is entirely obscured by Feynman diagrams.

This difficulty is more than aesthetic. A modest increase in the number of external legs

causes Feynman diagrams to proliferate. This makes it difficult even for modern computers

to calculate amplitudes for processes relevant at the LHC!

Starting in the early nineties Bern et al. [2–4] developed efficient techniques to calculate

one-loop amplitudes from on-shell tree level amplitudes using, what is called, ‘generalized

unitarity’. Surprisingly on-shell techniques for tree level amplitudes came only later with

the discovery of the BCFW recursion relations [5, 6]. However, it is now possible, starting

with only the on-shell, three point amplitude, to calculate arbitrary one loop amplitudes

in a gauge theory. This approach to amplitudes is not only efficient, it also lends itself to

easy automation [7].

The current techniques work well for gauge theories at one loop but it is not unrea-

sonable to hope that they are the nucleus of a reformulation of perturbative quantum field

theory. Apart from computational simplicity, what can we hope to gain from this new

perspective? One answer suggested in [8] was that this approach might help us move away

from locality!

Contrary to expectations based on the Lagrangian, [8] pointed out that scattering

amplitudes in N = 4 Super Yang-Mills (SYM) are ‘simpler’1 than amplitudes in pure

Yang-Mills (YM) which, in turn, are simpler than amplitudes in a scalar theory. The

authors of [8] wondered if the Lagrangian formulation obscures this simplicity because it

keeps locality manifest. This led them to suggest that one should look for a dual formulation

of quantum field theory that would make this simplicity, rather than locality, explicit.

Even more ambitiously, one could ask whether this new approach helps us generalize

the structure of local quantum field theory. While it is simple to write down a nonlocal clas-

sical Lagrangian such an action almost always runs into trouble with unitarity. However,

in the resuscitated S-matrix approach to quantum field theory, it is unitarity that is kept

manifest rather than locality. This makes it a natural framework to study these questions.

Unfortunately, these arguments are deceptively simple. The S-matrix approach to

quantum field theory relies heavily on the analytic properties of amplitudes. These in

1The criterion of simplicity here is aesthetic rather than computational. See section 4.4.
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turn are tightly linked to locality (see, for instance, [9]). For example, consider a nonlocal

interaction smeared over a distance l. To represent this using a local Lagrangian, we

need an infinite sequence of derivatives — very roughly, because f(x + l) = el ∂
∂x f(x). In

momentum space, this leads to an essential singularity in the complex plane. This is familiar

from string theory. Recall that the Veneziano amplitude in the hard scattering limit goes

like exp
(

−α′E2
)

(where E is some energy scale describing the external particles) [10].

So, it is of interest to study how well S-matrix techniques stand up when they are

applied to field theories with novel analytic properties. This is what we do in this paper.

We will study scattering in noncommutative field theories. Noncommutative field the-

ories are obtained by considering quantum field theory on a spacetime where the underlying

coordinates do not commute

[xµ, xν ] = iθµν . (1.1)

From the point of view of quantum field theory, this is equivalent to replacing the ordinary

pointwise product of fields in the Lagrangian with the star product

(f ∗ g) (x) = lim
x→y

e
i
2
θµν ∂2

∂xµ∂yν f(x)g(y). (1.2)

In this paper, we will study U(N) gauge theories that admit a natural noncommutative

generalization [11, 12].

Noncommutative gauge theories furnish us with an excellent test-case for the questions

that we wish to study. These theories are nonlocal but yet relativistic and perturbative.

Thus their S-matrices have novel analytic properties that are easily accessible within per-

turbation theory. This is exactly what we need.

As we have explained above, nonlocal interactions can lead to an analytic structure

that is very different from that of ordinary quantum field theories. Indeed, noncommutative

amplitudes, even at tree level, possess essential singularities in the complex plane. Now, the

tree level recursion relations that we mentioned above — the BCFW recursion relations

— are quite delicate. For example, the addition of generic higher order terms in the

action makes them inapplicable. Noncommutative field theories have an infinite number

of derivatives in their interaction vertices. Naively, this might lead us to think that the

BCFW recursion relations are not applicable at all. This naive expectation is incorrect.

The BCFW recursion relations are often written down for, what are called, color-

ordered amplitudes. A color-ordered amplitude is a part of the full scattering amplitude

that is obtained by summing over all double line graphs that have the same cyclic ordering

of external momenta (the full amplitude requires us to consider color-ordered amplitudes

with all possible different cyclic orderings). Now, color-ordered amplitudes also have a

special place in the study of noncommutative field theories. This is because they differ

from the corresponding amplitude in ordinary theories only by a calculable phase [13]!

This remarkable property allows us to directly apply the BCFW recursion relations to

noncommutative amplitudes.

At one-loop we can have both planar and non-planar double line graphs and this makes

the situation somewhat more subtle. In ordinary theories, all one-loop amplitudes can be

written in terms of three basic loop integrals — boxes, triangles and bubbles — apart

– 2 –
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from rational remainders. The result mentioned above allows us to directly generalize this

decomposition to one-loop noncommutative planar amplitudes.

However, for noncommutative, non-planar amplitudes, we require a larger basis of

loop integrals (this basis is shown in table 1). Nevertheless, the principle, that arbitrarily

complicated one-loop amplitudes can be reduced to linear combinations of a small set

of basis loop integrals with coefficients that are related to products of tree amplitudes,

remains true.

Finally, we go on to study the noncommutative version of the N = 4 SYM theory.

In [8], it was pointed out that, in a certain sense, the ordinary N = 4 SYM theory has a

very simple one-loop S-matrix because only boxes (and no triangles or bubbles) appear in

one-loop amplitudes. We find that a very similar property holds for the noncommutative

theory. There are no bubble integrals in the decomposition of one-loop non-planar ampli-

tudes. Moreover, while triangles do occur, their coefficients are completely controlled by

box coefficients.

In ordinary gauge theories, one-loop amplitudes contain purely rational pieces that

have no branch cut singularities. These terms are inaccessible to cuts and novel methods

are required to calculate them [14, 15]. The origin of these terms is interesting. A purely

four dimensional analysis might lead us to believe that one-loop amplitudes can be reduced

to a sum of boxes, triangles and bubbles; repeating this analysis carefully within dimen-

sional regularization reveals a possible rational remainder [4, 16]. However, in theories with

good UV properties, such as N = 4 SYM, these terms are absent [2, 3]. In the same way,

for noncommutative, non-planar amplitudes, as we show in appendix A, a four dimensional

reduction of one-loop amplitudes gives us the correct answer. Dimensional regularization

does not introduce any subtleties in this reduction procedure. Despite this, noncommuta-

tive non-planar amplitudes, in non-supersymmetric gauge theories, do have terms that are

entirely free of branch cuts. These terms enter the amplitude through tadpole diagrams

that do not vanish in the noncommutative theory [17, 18]. It is know that these terms

do not appear in supersymmetric theories [18]. We defer the problem of calculating these

terms for non-supersymmetric theories to a future study.

An overview of the rest of the paper is as follows. In section 2, we show that the BCFW

recursion relations can be used to calculate tree-level amplitudes in noncommutative gauge

theories. In section 3, we show that one-loop amplitudes can also be calculated using

on-shell methods. In section 4, we study the S-matrix of N = 4 noncommutative SYM

theory, at tree and loop-level. The S-matrix of the noncommutative N = 4 SYM theory

is structurally very simple, just like the S-matrix of the ordinary N = 4 SYM theory. In

section 5, we work out some explicit examples of scattering amplitudes to elucidate these

ideas. Appendix A contains a proof of some of the claims made in section 3.

2 On-shell methods for noncommutative tree amplitudes

In this section, we show how to generalize the BCFW recursion relations to noncommutative

gauge theories.

– 3 –
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2.1 Review

Consider a scattering amplitude of n particles in a U(N) gauge theory. The amplitude

depends on the momentum, color and polarization of each particle. Since the amplitude

is a gauge invariant object, it is possible to write it as a sum over traces. At tree-level we

can only get a single trace. Thus, it must be true that the amplitude At can be written as

(see [3] and references there)

At =
∑

π∈Sn/Zn

At
πTr (T aπ(1) . . . T aπ(n)) , (2.1)

where ai indexes the color of particle i and the matrices T i are the adjoint generators. The

sum is over all the set of all permutations modulo cyclic permutations. The coefficients of

the traces, At
π are called color-ordered amplitudes. We use the superscript t to indicate

that this is a tree amplitude.

It is simple to prove the statement above. We merely reformulate perturbation theory

in double line notation. A double line graph has the property that it uniquely specifies

the cyclic ordering of the external momenta.2 Hence, the sum over all double line graphs

naturally leads to the structure (2.1).

The full amplitude At is, of course, invariant under permutations of the different

particles but when we speak of a color-ordered amplitude we must fix a particular cyclic

ordering. We have suppressed the dependence on the external momenta and helicities

in (2.1) but, at times below, we will show this explicitly.

2.1.1 BCFW extension

Next, we briefly review spinor helicity variables (see [19] and references there). Given an

on-shell momentum for a massless particle, we can decompose it into spinors using

pαα̇ = pµσµ
αα̇ = λαλ̄α. (2.2)

We can take dot products of two momenta using

2p1 · p2 = 〈λ1, λ2〉
[

λ̄1, λ̄2

]

, (2.3)

where

〈λ1, λ2〉 = ǫαβλα
1 λβ

2 ,
[

λ̄1, λ̄2

]

= ǫα̇β̇λ̄α̇
1 λ̄β̇

2 . (2.4)

In terms of these spinors, gauge boson polarization vectors can be chosen to be

ǫ+
αα̇ =

µαλ̄α̇

〈µ, λ〉 , ǫ−αα̇ =
λαµ̄α̇
[

λ̄, µ̄
] , (2.5)

where µ, µ̄ are arbitrary reference spinors.

2In a single-line graph, the notion of cyclic ordering of external momenta is ill-defined.

– 4 –
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Consider an arbitrary color ordered gauge boson amplitude. We denote the helicity

of the first gauge boson by σ1 and that of the nth gauge boson by σn. Now, deform the

momenta and polarization vectors of these particles according to

λ1(z) = λ1, λ̄1(z) = λ̄1 + zλ̄n, λn(z) = λn − zλ1, λ̄n(z) = λ̄n, if(σ1, σn) = (−1, 1),

λ1(z) = λ1 + λnz, λ̄1(z) = λ̄1, λn(z) = λn, λ̄n(z) = λ̄n − zλ̄1, otherwise.

(2.6)

Here z is an arbitrary complex number. Note that while z can become large which makes

individual components of the momentum associated with particle 1 and n large, each

momentum stays on shell. This is called the BCFW extension. It was shown in [5, 6] that,

under this extension, the amplitude

At
(

{σ1, λ1(z), λ̄1(z)} . . . {σn, λn(z), λ̄n(z)}
)

−−−→
z→∞

O

(

1

z

)

. (2.7)

This surprising result allows us to write down recursion relations for tree amplitudes. Tree

amplitudes develop simple poles in z whenever an intermediate propagator goes on shell

and the residue at each pole is just the product of two smaller tree amplitudes. Since the

amplitude dies off at large z, we can completely reconstruct it from these poles i.e. from

lower point tree amplitudes. This leads to the BCFW recursion relations.

At
(

{σ1, λ1(z), λ̄1(z)} . . . {σn, λn(z), λ̄n(z)}
)

=

n−2
∑

j=2
σint=±1

1
(

p1(z) +
∑j

i=2 pi

)2

[

At
(

{σ1, λ1(z
j
p), λ̄1(z

j
p)} . . . {σj , λj , λ̄j}, {σint, λint, λ̄int}

)

× At
(

{−σint, λint,−λ̄int}, {σj+1, λj+1, λ̄j+1} . . . {σn, λn(zj
p), λ̄n(zj

p)}
)]

,

(2.8)

where zj
p, pint are defined by

(

p1(z
j
p) +

j
∑

i=2

pi

)2

= 0, pint = p1(z
j
p) +

j
∑

i=2

pi, (2.9)

and the sum over σint runs over all possible intermediate helicities.

In other dimensions, spinor helicity variables are not available (see, though, the recent

paper [20]) but a very similar set of recursion relations can be derived for tree amplitudes

in a gauge theory in any number of dimensions [21].

2.2 BCFW analysis for noncommutative amplitudes

Finally, let us briefly review perturbation theory for noncommutative gauge theories.

The generalization of the machinery above to noncommutative theories will then be-

come apparent.

Perturbation theory, for noncommutative theories, is most usefully formulated in dou-

ble line notation. Indeed, this notation is convenient even if we have no gauge fields in

– 5 –
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the picture. We refer the reader to [22] for an analysis of noncommutative perturba-

tive dynamics.

In double line notation, each noncommutative vertex develops an additional phase

factor over the corresponding vertex in the ordinary theory.

V nc(k1 . . . kn) = V ord(k1 . . . kn) exp





−i

2

∑

i<j

ki × kj



 ,

ki × kj = kµ
i kν

j θµν .

(2.10)

For example, the three point vertex and its associated phase factor are shown in figure 1.

Note that we have marked the flow of index lines and in calculating the phase we follow

these arrows which causes us to go around the vertex in a counter-clockwise orientation.

Thus we see that, even tree level noncommutative amplitudes have essential singular-

ities in the complex plane. At first sight, we might worry that these essential singularities

will complicate amplitudes with all sorts of phases. This is, indeed, true of the full scat-

tering amplitude. In fact, even the full three point amplitude (obtained by summing over

the two possible cyclic orderings of external legs) involves sin(k2 × k3). What makes it

possible to use the BCFW recursion relations in noncommutative theories is a simple and

remarkable result about color-ordered amplitudes in noncommutative theories that was first

proved by Filk [13].

It was shown in [13] that planar color-ordered amplitudes in a noncommutative gauge

theory can be obtained simply from their commutative counterparts; one simply multiplies

the ordinary color ordered amplitude by a momentum dependent phase. To be specific

Anc(k1 . . . kn) = Aord(k1 . . . kn)φ(k1 . . . kn),

φ(k1 . . . kn) = exp





−i

2

∑

i<j

ki × kj



 .
(2.11)

We review the proof of this result following [22, 23] referring the reader to those papers for

more details.

As we have already explained, noncommutative perturbation theory is most conve-

niently formulated in double-line notation. Now, for a planar graph, we can associate a

‘momentum’ with each index line [24]. This ‘momentum’ flows in the direction of the index

line. The actual momentum flowing through a propagator is the difference of the ‘index-

momenta’ flowing on the two sides of the propagator, pij = li − lj where i, j are labels for

the index lines on the two sides of the propagator.

For example, in figure 1, we can write

k1 = l1 − l2, k2 = l2 − l3, k3 = l3 − l1 (2.12)

The phase associated to a vertex in (2.10) is then

∑

i<j

ki × kj =

n−1
∑

i=1

li × li+1 + ln × l1. (2.13)

– 6 –
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Phase:

k2

exp(−i
2

k2 × k3)

k1
k3

Figure 1. Three Point Vertex.

The advantage of this approach is clear; it allows us to write the total phase factor at each

vertex as a sum of phase factors, each of which comes from a propagator. Now, the phase

factors for each internal propagator cancel at its two ends. This leaves us only with phase

factors from the external legs. From here, it is clear that (2.11) follows.

However, this is very extremely fortuitous! To obtain the noncommutative planar

amplitudes, we just need the color-ordered ordinary amplitudes. These can be calculated

by the standard recursion relations. We then multiply this answer by the appropriate phase

to obtain the noncommutative amplitude. The essential singularities in noncommutative

planar amplitudes have been controlled!

The result above is very simple once a knowledge of recursion relations and noncommu-

tative perturbation theory is put together. However, this should not obscure the fact that

the applicability of recursion relations to noncommutative gauge theories relies on a rather

remarkable structure. To emphasize this, consider what happens if we add generic higher

order terms — say a F 4 term — to the action. Recursion relations rely crucially on the

property (2.7). It is easy to see, from the the derivation in [21], that generic higher order

terms will spoil this property. In noncommutative theories, the action contains an infinite

number of higher derivative terms. In spite of this, noncommutative tree amplitudes are

amenable to recursion relations!

3 One-loop analysis

3.1 Review

One loop amplitudes receive contributions from both planar and non-planar double-line

graphs. The planar graphs provide a single trace contribution to the amplitude whereas

the non-planar graphs lead to a double trace contribution. In analogy with (2.1), we then

obtain the following trace decomposition for U(N) gauge theory amplitudes (see [25] and

references there),

A1ℓ =N
∑

π∈Sn/Zn

Ap
πTr (T aπ(1) . . . T aπ(n))

+

[n/2]
∑

j=1

∑

π∈Sn/Sn;j

Anp
j;πTr (T aπ(1) . . . T aπ(j))Tr (T aπ(j+1) . . . T aπ(n)) .

(3.1)

Here Sn;j is the set of all permutations that cyclically permutes the two sets (1 . . . j),

(j + 1 . . . n) within themselves. Thus, the sum above produces all possible single and

– 7 –
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double trace structures. The superscript 1ℓ indicates a 1-loop amplitude, the superscript

p stands for planar while np stands for non-planar.

3.1.1 One loop analysis in ordinary theories

The reconstruction of one-loop amplitudes using tree amplitudes has a long history

(see [2–4, 25, 26] and references there). This work has been extended in the past few

years after the revival of interest in on-shell techniques [8, 14, 15, 27, 28]. We refer the

reader to the review [29]. Briefly, it is now possible, starting with just the on-shell three

point amplitude, to systematically reconstruct the one-loop S-matrix for an ordinary gauge

theory. This process also lends itself to easy automation [7].

The construction of S-matrix elements, in ordinary theories, at one-loop proceeds in

two steps. The first is to show that all one-loop amplitudes can be written as a sum of 3

basic scalar integrals — boxes, triangles and bubbles — with coefficients that are rational

functions of the external momenta, plus a purely rational remainder. Next, one looks for

efficient methods to reconstruct these coefficients and the rational piece of the amplitude.

There are two ways to understand this integral reduction procedure. The first is to look

upon this as an elaborate application of partial fractions. In 4 dimensions, it is possible to

use partial fractions and Passarino-Veltman reduction [30] to reduce an arbitrary one-loop

integral to a sum of scalar boxes, triangles and bubbles. However, loop integrals need to

be dimensionally regulated and repeating this process in 4+2ǫ dimensions [16] leads to an

additional rational remainder. This is the philosophy adopted in [31] and this is also what

we shall use in appendix A.

However, this reduction procedure can also be understood more physically. One-loop

amplitudes have branch cuts; the discontinuity across such a cut can be calculated using

the celebrated Cutkowski rules [32]. However, this discontinuity when considered as an

analytic function of the remaining kinematic invariants can, itself, have branch cuts. The

discontinuity of the discontinuity is given by putting 3 internal lines on shell. In four

dimensions, the maximum number of internal lines that can be put on shell is four. Thus,

a sum of boxes, triangles and bubbles is enough to reproduce the most general branch-cut

structure at one-loop. When supplemented with a rational remainder, this is enough to

reproduce the most general analytic structure of an ordinary gauge theory amplitude.

In the past few years, efficient techniques have been developed to perform this integral

reduction for an arbitrary one-loop amplitude (see [7, 8, 28] and references there).

In this discussion, we should remember that ordinary massless gauge theories have

both UV and IR divergences. This is also true of planar amplitudes in the noncommu-

tative theory. Most of our discussion below will deal with non-planar, noncommutative

amplitudes. At one-loop, these amplitudes are UV convergent but have IR divergences.

We regulate these divergences by working in 4 + 2ǫ dimensions.

3.1.2 Noncommutative non-planar amplitudes

How much of the usual analysis holds for noncommutative theories? For the planar part

of the one-loop amplitude this analysis goes through almost unchanged. We calculate

– 8 –
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1

2

3 4

p
6

Figure 2. Non-Planar Diagram.

the ordinary color-ordered planar amplitude using the methods described above and then

multiply this by a phase as in section 2.

However, the really interesting properties of noncommutative theories are in the non-

planar sector. Noncommutative non-planar gauge theory theory amplitudes at one-loop

are UV finite and show remarkable properties such as UV-IR mixing [22]. Let us briefly

review how this comes about.

Consider the non-planar diagram shown in figure 2. What is the phase factor and

trace structure associated with this diagram? To write the phase-factor we follow the flow

of index lines around the diagram following the convention in figure 1. From this it is easy

to see that the integrand for the Feynman diagram in figure 2 has a phase factor

phase = exp {ip · k}φ(k1, k2, k3, k4, k5, k6),

kµ =
1

2
θµν (kν

4 + kν
5 + kν

6 − kν
1 − kν

2 − kν
3 ) ,

(3.2)

where φ is defined in (2.11), and a trace structure

Trace Structure = Tr
(

T 1T 2T 3
)

Tr
(

T 4T 5T 6
)

. (3.3)

It is easy to see that in any non-planar diagram, the trace structure and phase factor

are always correlated. The coefficient of the trace

Tr(T a1 . . . T aj )Tr(T aj+1 . . . T an),

always comes with a phase factor of

exp [ip · k]φ (k1, . . . kn)

with

kµ =
1

2
θµν





n
∑

i=j+1

kν
i −

j
∑

i=1

kν
i



 , (3.4)

where p is marked from j + 1 → 1. We see, thus, that in non-planar graphs the simplest

scalar integrals we obtain are of the form3

I = i

∫

eip·k

∏r
i=0 [(p + qi)2 + iǫ]

d4+2ǫp

(2π)4+2ǫ
. (3.5)

3In this expression and other expressions below, it should be understood that q0 = 0. We do not separate

(p + q0)
2 from the other propagators only because this allows for more compact formulae in what follows
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Later we will see that non-planar tensor integrals can be simply related to derivatives of

the integral in (3.5).

The integral in (3.5) is UV convergent because of the phase factor eip·k. However, if

we do introduce a UV cutoff this modifies not only the UV properties of the theory but

also its IR properties! This is called UV-IR mixing [22].

Let us analyze these integrals a bit more to study their analytic structure. We introduce

Feynman parameters and Wick rotate to get

I = (−1)r
∫

d4+2ǫpE

(2π)4+2ǫ
dxi

eipE ·k−
P

xi(qi·k)dxiδ (1 −∑xi)
(

p2
E + ∆

)r+1 , (3.6)

where,

∆ = −
∑

i

q2
i xi +

(

∑

i

qixi

)2

. (3.7)

Note that k is purely spatial in a unitary noncommutative theory [33, 34], which is what

allows us to Wick rotate (3.5) despite the p · k in the exponent. The integral over the

momenta can be done using

I = (−1)r
∫

exp
[

ipE · k −
∑

xi(qi · k)−β
(

p2
E + ∆

)

] δ (1 −∑ xi) dxi d4+2ǫpE βrdβ

(2π)4+2ǫΓ(r + 1)

=
(−1)r|k|r−1−ǫ

2r(2π)2+ǫΓ(r + 1)

∫

dxiδ(1 − xi)e
−i

P

xi(qi·k)
Kr−1−ǫ

(

|k|
√

∆
)

(√
∆
)r−1−ǫ ,

(3.8)

where K is a modified Bessel function [35] and |k| =
√
−k2 is the spatial length of k.

In ordinary theories, it is possible to explicitly do the integral over Feynman parameters

and expand scalar boxes, triangles and bubbles using logarithms and dilogarithms [36]. We

are unaware of a similar expansion for noncommutative integrals.

For large argument, x ≫ 1, the Bessel function goes to Kr(x) −−−→
x≫1

√

π
2xe−x. Thus,

the integrals (3.5) also have essential singularities in the complex plane.

3.2 A basis of master integrals

We now discuss how noncommutative non-planar graphs can be reduced to a small set of

basis integrals. As we have already mentioned, this basis is larger than the corresponding

basis in ordinary theories. The integral (3.5) has branch cut singularities. The position

of these singularities is given by the Landau equations [37]. Moreover, just as in ordinary

theories, we can compute the discontinuity across the branch cut by cutting the corre-

sponding Feynman graph. As in ordinary theories, this discontinuity may itself have a

discontinuity which is given by a triple cut; in four dimensions the maximal cut we can

make is a four-cut.

However, unlike ordinary theories, scalar boxes, triangles and bubbles cannot repro-

duce the most general branch cut structure in noncommutative non-planar amplitudes.
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This is because of the anisotropic phase-factor eip·k in (3.5). In appendix A, we show

how this phase factor forces us to include additional elements in the basis of master inte-

grals. In section 3.3, we show how these additional elements can be understood physically

from the branch-cut structure of noncommutative non-planar integrals. This is simplest to

understand for a four-cut so we refer the interested reader to subsection 3.3.1.

It is shown in appendix A that all one-loop non-planar amplitudes in noncommutative

gauge theories may be decomposed as

Anp
j;π =

∑

α4

∫
∑1

m=0 A
(m)
α4 (p · k)meip·k

∏3
i=0 [(p + qα4

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+
∑

α3

∫
∑3

m=0 B
(m)
α3 (p · k)meip·k

∏2
i=0 [(p + qα3

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+

∫
∑2

m=0 C(m)(p · k)meip·k

∏1
i=0 [(p + qi)2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+ R + O (ǫ) .

(3.9)

Here A,B,C,D are rational functions of the external momenta and θ multiplied by a

possible phase that is linear in θ and bilinear in the external momenta. These coefficients

are free free of branch-cut singularities. The index αn runs over different partitions of the

external momenta into n sets for a given noncommutative non-planar amplitude Anp
π . It

serves to remind us that in the expansion of any amplitude, there are several distinct boxes

and triangles. On the other hand, as explained above equation (3.4), k is the same for every

integral that appears in the expansion (3.9) above. We emphasize that the expansion above

is correct as a Laurent series in ǫ up to terms of O(ǫ). This basis of integrals is shown in

table 1.

Note that every integral in this basis can be obtained from (3.8). The tensor integrals

in table 1 that have insertions of (p·k) in the numerator are related to the scalar integrals by

∫

(p · k)m eip·k

∏r
i=0 [(p + qi)2 + iǫ]

d4+2ǫp

(2π)4+2ǫ
= |k|m

(

∂

∂|k|

)m ∫ eip·k

∏r
i=0 [(p + qi)2 + iǫ]

d4+2ǫp

(2π)4+2ǫ
,

(3.10)

where |k| =
√
−k2. Now we explain how to find the 9 loop coefficients in (3.9).

3.3 Obtaining the coefficients

3.3.1 Box coefficients

The Box coefficients are the simplest to find. We will be very explicit for this case. First,

let us understand the index α4 in (3.9). The term Anp
j;π in (3.1) receives contributions from

different boxes, each of which is labeled by a pair of integers 0 < i1 < j, 0 < i2 < n − j.

The index α4 is shorthand for these two integers. Given these two integers and j we can

divide the external momenta into 4 sets

{kπ1 . . . kπi1
}, {kπi1+1 . . . kπj

}, {kπj+1 . . . kπj+i2
}, {kπj+i2+1 . . . kπn}.
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Mnemonic Expression

∫ d4+2ǫp
(2π)4+2ǫ

eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)((p+q3)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)((p+q3)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)2eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)3eip·k

(p2+iǫ)((p+q1)2+iǫ)((p+q2)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

eip·k

(p2+iǫ)((p+q1)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)eip·k

(p2+iǫ)((p+q1)2+iǫ)

∫ d4+2ǫp
(2π)4+2ǫ

(p·k)2eip·k

(p2+iǫ)((p+q1)2+iǫ)

1 Remainder (free of branch-cuts)

Table 1. A Basis for Non-Planar One Loop Amplitudes.

For any such partition, we have

q1 =

i1
∑

m=1

kπm, q2 = q1 +

j
∑

m=i1+1

kπm , q3 = q2 +

n
∑

m=j+i2+1

kπm. (3.11)

When we put 4 lines on shell, we need to solve the equations

p2 = (p + q1)
2 = (p + q2)

2 = (p + q3)
2 = 0. (3.12)

Evidently, this fixes the internal momentum p to be one of two possible values [27]. Let us

call these two solutions p±. For each of these solutions, we calculate the four-cut

C±
α4

eip±·k =
∑

σi
int=±1

[

At
(

{σ1
int, p

±}, {σπ1 , kπ1}, . . . {σπi1 , kπi1
}, {−σ2

int,−p± − q1}
)

× At
(

{σ2
int, p

± + q1}, {σπi1+1 , kπi1+1}, . . . {σπj , kπj
}, {−σ3

int,−p± − q2}
)

× At
(

{σ3
int, p

± + q2}, {−σ4
int,−p± − q3}, {σπj+i2+1, kπj+i2+1}, . . . {σπn , kπn}

)

× At
(

{σ4
int, p

± + q3}, {−σ1
int,−p±}, {σπj+1 , kπj+1}, . . . {σπj+i2 , kπj+i2

}
)]

.

(3.13)

We wish to emphasize two points here

1. The order of particles in the tree amplitudes (up to cyclic permutations) is important.

Note that the momenta appear in a different order in the third and fourth tree

amplitudes in (3.13) than they do in the first and second.
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2. It is easy to check that the product of the four tree momenta in (3.13) produces a p

dependent phase that we have explicitly extracted in the definition of C.

We need to reproduce this cut, using the terms in (3.9). This is done by solving the

two equations

C+
α4

= A(0)
α4

+ A(1)
α4

(

p+ · k
)

C−
α4

= A(0)
α4

+ A(1)
α4

(

p− · k
)

(3.14)

With this definition, A
(0)
α4 , A

(1)
α4 become rational functions of the external momenta and θ

with a phase that is bilinear in the external momenta and linear in θ.

We wish to emphasize the contrast with ordinary theories. In ordinary theories, for

each partition, we have only a single box coefficient as opposed to the two coefficients A(0)

and A(1) that we have here. There, we add the contribution from both solutions of (3.12),

and set the single box coefficient to the sum. In noncommutative gauge theories, this

procedure would not correctly reproduce the 4-cut because of the additional p dependent

phase in (3.13). We need the two different boxes shown in table 1 to accurately reproduce

this behavior.

Hence, in ordinary gauge theories, the cuts provide us with more information than we

use. Noncommutative gauge theories, on the other hand, use all the information that is

provided by the cuts!

3.3.2 Triangle coefficients

Now, let us consider the triangle coefficients. Once again, several triangles contribute to

any particular noncommutative non-planar amplitude. Given either an integer 0 < i1 < j

or an integer 0 < i2 < n − j, we can partition the momenta into three sets.

{kπ1 . . . kπi1
}, {kπi1+1 . . . kπj

}, {kπj+1 . . . kπn} or

{kπ1 . . . kπj
}, {kπj+1 . . . kπj+i2

}, {kπj+i2+1 . . . kπn}.
Consider the first case (the generalization to the second case is obvious). Here

q1 =

i1
∑

i=1

kπi
, q2 = q1 +

j
∑

i=i1+1

kπi
. (3.15)

The 3-cut does not freeze the internal momenta; instead it leaves us with one complex

parameter. We fix this parameter by solving the equations

p2 = (p + q1)
2 = (p + q2)

2 = 0, p · k = z. (3.16)

Once again, we have two solutions to these equations, that we will call p±.

We calculate the three-cut

C±
α3

eiz =
∑

σi=±1

[

At
(

{σ1
int, p

±}, {σπ1 , kπ1} . . . {σπi1 , kπi1
}, {−σ2

int,−p± − q1}
)

At
(

{σ2
int, p

± + q1}, {σπi1+1, kπi1+1} . . . {σπj , kπj
}, {−σ3

int,−p± − q2}
)

At
(

{σ3
int, p

± + q2}, {−σ1
int,−p±}, {σπj+1 , kπj+1} . . . {σπn , kπn}

)

]

.

(3.17)
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Now, the boxes present in the amplitude also contribute to the three cut. Since, we have

already calculated the box coefficients, we can write down this contribution:

R±
α3

= lim
p→p±

[

p2(p + qα3
1 )2(p + qα3

2 )2
∑

α4

∑1
m=0 A

(m)
α4 (p · k)m

∏3
i=0(p + qα4

i )2

]

. (3.18)

It is easy to see from the general analysis of the growth of tree amplitudes for large

BCFW deformations in [21] that C±
α3

can grow like z3 at large z. However, in contrast to

ordinary theories, the remainder R±
α3

continues to provide a non-vanishing, O (1) contribu-

tion for large z. This contribution comes from the crossed box diagram on the second line

of table 1 corresponding to an integral that has an insertion of p · k in the numerator.

In ordinary theories, it is possible to project out the contribution from the boxes just

by taking the large z limit of C±
α3

[8, 28]. This is not enough for noncommutative theories.

To isolate the triangle coefficients, we need to explicitly subtract off the box-contribution

to the three-cut. This leads us to consider the difference,

C′
α3

=
1

2

∑

±

(

C±
α3

− R±
α3

)

. (3.19)

In general, both C±
α3

and R±
α3

contain terms that die off as O
(

1
z

)

for large z. However,

the analysis in appendix A tells us that these terms must cancel in (3.19) — C′
α3 is a

polynomial of degree 3 in z! The triangle coefficients are then just

C′
α3

= B(0)
α3

+ B(1)
α3

z + B(2)
α3

z2 + B(3)
α3

z3. (3.20)

We emphasize that R±
α3

makes a physical contribution to B
(0)
α3 .

Note, that we could also extract these coefficients directly from the difference in the

large z behavior of Cα3 and Rα3 ; at times, the calculation of the three-cut (3.17) may

simplify in this limit. However, we emphasize that (3.20) is true for all z, not just large z.

In fact, as we remark below, the fact that C′
α3 is a polynomial gives us a computationally

efficient method of obtaining triangle coefficients even in ordinary gauge theories. This is

similar in spirit to the procedure outlined in [31, 38].

3.3.3 Bubble coefficients

A single bubble diagram contributes to each noncommutative non-planar amplitude, with

q1 =
∑j

i=1 kπi
. Now, putting two lines on shell leaves us with two free parameters. We

introduce auxiliary four-vectors w1, w2, that satisfy wi · k = wi · q1 = 0, wi · wj = δij . In

general, individual components of the wi will take complex values. Now, set

p2 = (p + q1)
2 = 0, p · k = z, p · w1 = cos θ, p · w2 = sin θ. (3.21)

We will use ω = eiθ and denote the solutions to (3.21) by p(ω). As in the previous

subsections, we calculate

C2(ω)eiz =
∑

σi=±1

[

At
(

{σ1
int, p(ω)}, {σπ1 , kπ1} . . . {σπj , kπj

}, {−σ2
int,−p(ω) − q1}

)

At
(

{σ2
int, p(ω) + q1}, {−σ1

int,−p(ω)}, {σπj+1 , kπj+1} . . . {σπn , kπn}
)

]

,

(3.22)
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and the contribution from the higher order terms

R2(ω) = lim
p→p(ω)

p2(p + q1)
2

[

∑

α4

∑1
m=0 A

(m)
α4 (p · k)m

∏3
i=0(p + qα4

i )2
+
∑

α3

∑3
m=0 B

(m)
α3 (p · k)m

∏2
i=0(p + qα3

i )2

]

. (3.23)

The object we are interested in is

C′
2(ω) = C2(ω) − R2(ω). (3.24)

At any given value of the ω, as discussed in appendix A, several ‘spurious’ terms contribute

to (3.24). An analysis of (A.14) in appendix A tells us that to project out these spurious

terms we should adopt the prescription

1

4πi

∮

ω=∞

dω

ω

[

C′
L(ω) + C′

L(
1

ω
)

]

=

2
∑

m=0

C(m)zm, (3.25)

where the contour integral is taken about ω = ∞.

3.3.4 The remainder

It is shown in appendix A that terms that are free of branch-cuts do occur in noncommuta-

tive non-planar amplitudes. In contrast with ordinary theories, these terms are not strictly

rational, because of the possibility of phases that are bilinear in the external momenta.

In ordinary theories, a rational remainder arises in one loop integral decomposition,

because the cuts that are used to obtain the coefficients of boxes, triangles and bubbles are

performed in 4 dimensions whereas the amplitude itself needs to be dimensionally regulated.

Dimensional regularization does not cause any difficulties in the integral decomposition of

noncommutative non-planar amplitudes that we have outlined above. This is directly

linked to the excellent UV properties of these amplitudes. In ordinary theories with good

UV behavior — like N = 4 SYM — rational remainders do not occur either.

In noncommutative non-planar amplitudes, a remainder that is free of branch cuts

comes from tadpole diagrams that vanish in the ordinary theory but remain finite in the

noncommutative case. A modification of the techniques used in ordinary gauge theo-

ries [14, 15] might help in calculating such terms. However, we should note that the phys-

ical input used in those studies was that amplitudes should factorize correctly when the

sum of a subset of external momenta goes on shell [39]. The “rational” terms here are not

required for any such property. Since they are free of branch-cuts, they are not required

by unitarity either. In supersymmetric theories, such terms do not occur at all [17, 18].

We defer the study of these non-supersymmetric remainders to a future paper.

3.4 Application to ordinary theories

The technique of extracting one-loop integral coefficients that we have outlined above is

also applicable to ordinary gauge theories. Of course, in ordinary gauge theories, where

the loop-integrals have no eik·p factor, the crossed figures in table 1 can all be reduced

to ordinary integrals (with no insertions of p · k in the numerator). Nevertheless, it is
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efficient to calculate the coefficients in table 1 in an intermediate step. After calculating

these coefficients, we drop the eip·k factor and reduce the tensor integrals to scalar boxes,

triangles and bubbles using Passarino-Veltman reduction.4

The reason for this intermediate step is that we have an efficient technique to extract

the coefficients in table 1. This is because (3.19) and (3.25) give us polynomials in z. For

triangle coefficients, we only need to fit a third order polynomial in z. On a computer, this

is significantly easier (and requires 4 function calls) than extracting the large z behavior

of the three-cut. For bubble coefficients, once again we only need to fit a second order

polynomial which removes the need to do some of the integrals outlined in [7].

This is similar to the procedure used in [38] except for one important difference. In [38],

the starting point is an explicit expression for the integrand of a one-loop amplitude which

is then reduced to a sum of boxes, triangles and bubbles. The procedure of unitarity cuts

that we have discussed is not enough to reconstruct the entire Feynman integrand for an

amplitude. Cuts do give us the ‘physical’ terms in the integrand i.e. the coefficients of

boxes, triangles and bubbles. However, as the analysis in appendix A shows, Feynman

diagrams also give us ‘spurious’ terms that integrate to zero. These terms are not physical

(they even depend on the choice of gauge) and, in general, we should not expect the product

of on-shell tree amplitudes to reproduce them faithfully.

4 N = 4 Noncommutative SYM

We now discuss the S-matrix of noncommutative the U(N),N = 4 SYM theory. We

will find that, as in the ordinary case, the S-matrix of noncommutative N = 4 SYM

is structurally simple. In this section, we start by reviewing the on-shell techniques for

ordinary N = 4 SYM developed in [8]. We will then extend our analysis of the non-planar

sector of noncommutative pure gauge theories from the previous section to noncommutative

N = 4 SYM.

4.1 Review

First, we discuss a convenient parameterization of the particle content of the N = 4 theory

using what is called ‘on-shell superspace’ [40–42]. Our treatment here, closely follows [8].

The idea is to represent on-shell states in the N = 4 theory using a Grassmann

vector ηI ,

|η, λ, λ̄〉 = eQIαηIwα | − 1, λ, λ̄〉. (4.1)

Here, |−1, λ, λ̄〉 is the gauge boson state with negative helicity and momentum λαλ̄α̇. QIα

are supersymmetry generators in the N = 4 theory that transform in the fundamental

representation of the R-symmetry SU(4) (indicated by the index I) and as right handed

Weyl spinors (indicated by the index α). The spinor w must satisfy the condition 〈w, λ〉 =

1. η has 4 components that transform in the anti-fundamental of SU(4). This notation

compactly packages the entire N = 4 multiplet.

4We emphasize that because of UV-IR mixing, this is not the same as taking the θ → 0 limit of the

integrals in table 1.
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With this notation, scattering amplitudes become smooth functions of the η’s (one η

for each particle). A negative helicity gauge boson has η = 0. To obtain information about

a positive helicity gauge boson, we need to integrate over η

A(+1, . . .) =

∫

A(η, . . .)d4η (4.2)

Under a supersymmetry transformation

eQIαζIα |η, λ, λ̄〉 = |ηI + 〈ζI , λ〉, λ, λ̄〉 (4.3)

It was shown in [8] that if we consider tree level scattering in the N = 4 theory then

under the modified BCFW extension

At
(

{η1 + zη2, λ1 + zλ2, λ̄1}, {η2, λ2, λ̄2 − zλ̄1}, . . .
)

−−−→
z→∞

O

(

1

z

)

. (4.4)

Note that here, we need to extend η1 in addition to extending the momenta and polarization

vectors of particle 1 and particle 2.

The proof of this claim is simple. We do a supersymmetry transformation on the left

hand side of (4.4) with the parameter

ζI
α =

ηI
1 (λ2)α − ηI

2 (λ1)α

〈λ1λ2〉
(4.5)

Using (4.3), we see

e〈QI ,ζI〉|{η1 + zη2, λ1 + zλ2, λ̄1}, {η2, λ2, λ̄2 − zλ̄1}, . . .〉
= |{0, λ1 + zλ2, λ̄1}, {0, λ2, λ̄2 − zλ̄1}, . . .〉

(4.6)

Note that the other η’s in the state in (4.6) do change by O(1). This, of course,

cannot affect the large z scaling of the amplitude in (4.4). Thus, at large z, the scattering

amplitude in (4.4) has the same scaling as the amplitude of two BCFW extended negative

helicity gauge bosons in N = 4 SYM theory. However, this was shown to vanish as O
(

1
z

)

in [43], which proves our result.

4.2 Tree level scattering

Our analysis of tree level scattering in N = 4 SYM is parallel to our analysis of pure gauge

theories in section 2. At tree-level, a scattering amplitude for n particles in a U(N), N = 4

noncommutative gauge theory can be decomposed into traces using (2.1).

Moreover, just as in pure gauge theories, in the N = 4 SYM theory, planar amplitudes

are related to amplitudes in the ordinary theory by (2.11). Now, color-ordered amplitudes

in the ordinary N = 4 theory can be calculated using the recursion relations given in [8].

We can then use (2.11) to evaluate color-ordered amplitudes in the noncommutative theory.

Note that our story relies crucially on N = 4 supersymmetry being maintained. In

β-deformed SYM, for example, different fields have different noncommutativity parame-

ters [44]. For these theories, it is not possible to relate all scattering amplitudes to the

scattering of negative helicity gauge bosons. Hence, these amplitudes cannot be constructed

using the BCFW recursion relations.
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4.3 One loop scattering

Planar one-loop amplitudes in noncommutative N = 4 SYM are related to planar one-loop

amplitudes in the ordinary theory by a phase given in (2.11). The on-shell techniques that

we outlined in subsection 3.1 apply to any theory and so, can be used to calculate one-loop

amplitudes in the ordinary N = 4 theory. Once we have this answer, we multiply it by a

phase to obtain the noncommutative answer.

It was shown in [8, 45] that one-loop amplitudes in the ordinary N = 4 theory are

structurally very simple. Recall that, at one loop, amplitudes in an ordinary theory (and

planar amplitudes in a noncommutative theory) can be written in terms of boxes, trian-

gles, bubbles and a rational remainder. The “no-triangle hypothesis” [46] states that the

expansion of N = 4 amplitudes only contains boxes. This structural simplicity carries over

directly to the planar sector of the noncommutative theory.

Here, we are more interested in the non-planar sector of the theory. Even for this

sector, we will see that this simplicity remains, albeit in an altered form.

Non-planar amplitudes in the noncommutative N = 4 theory can, in principle be

decomposed using (3.9). However, we will show below that of the 9 loop coefficients in that

equation, only the two box coefficients are independent. The integral expansion of non-

planar amplitudes in the noncommutative N = 4 theory does not contain any bubbles or

rational terms; it does contain triangles but the coefficients of these triangles are completely

controlled by the box-coefficients.

Non-planar amplitudes in the N = 4 noncommutative theory have the decomposition

Anp,sym
j;π =

∑

α4

∫
∑1

m=0 A
(m)
α4 (p · k)meip·k

∏3
i=0 [(p + qα4

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+
∑

α3

∫

B
(0)
α3 eip·k

∏2
i=0 [(p + qα3

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

(4.7)

As we have explained above, the only independent coefficients in this expression are A
(0)
α4

and A
(1)
α4 . The single non-zero triangle coefficient B

(0)
α3 is completely controlled by the box

coefficients. We will show that the coefficients C(m) are all zero while the rational remainder

R is already known to be zero in this theory [18].

The box coefficients are calculated using the procedure we outlined in subsection 3.3.1.

Given a partition of the external momenta, we put the internal momenta on shell by

demanding (3.12) and calculate a four-cut

C±
α4

eip±·k =

∫

∏

d4ηij
[

At
(

{η31, p±}, {ηπ1 , kπ1} . . . {ηπi1 , kπi1
}, {η12,−p± − q1}

)

× At
(

{η12, p± + q1}, {ηπi1+1 , kπi1+1} . . . {ηπj , kπj
}, {η24,−p± − q2}

)

× At
(

{η24, p± + q2}, {η43,−p± − q3}, {ηπj+i2+1, kπj+i2+1} . . . {ηπn , kπn}
)

× At
(

{η43, p± + q3}, {η31,−p±}, {ηπj+1 , kπj+1} . . . {ηπj+i2 , kπj+i2
}
)]

(4.8)
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The only difference with (3.13) is that the sum over the two gluon helicities there, is replaced

by an integral over the intermediate η’s which automatically sums over the entire N = 4

multiplet. Once we have calculated the four-cut, the box coefficients can be calculated

using (3.14).

We now turn to the triangle coefficients. Given a partition of the external momenta we

put the internal momenta on shell by demanding (3.16). We will show that the three-cut

C±
α3

vanishes as O
(

1
z

)

for large z. The box coefficients contribute to C′
α3 (that we defined

in (3.19)) through Rα3 . Thus only one triangle coefficient — B
(0)
α3 — is non-zero and it is

completely determined by the box coefficients.

The proof of this assertion closely follows the proof of the no-triangle hypothesis in [8].

Recall, our procedure for calculating triangle coefficients explained in section 3.3.2. For any

amplitude we choose a partition as explained in subsection 3.3.2 and a set of intermediate

momenta satisfying (3.16). Then we calculate the 3-cut,

C±
α3

eiz =

∫

∏

d4ηij
[

At
(

{η31, p±}, {ηπ1 , kπ1} . . . {ηπi1 , kπi1
}, {η12,−p± − q1}

)

× At
(

{η12, p± + q1}, {ηπi1+1, kπi1+1} . . . {ηπj , kπj
}, {η24,−p± − q2}

)

× At
(

{η24, p± + q2}, {η31,−p±}, {ηπj+1 , kπj+1} . . . {ηπn , kπn}
)]

.

(4.9)

Consider the large z limit of C±
α3

. The two solutions for the intermediate momenta — p± —

will lead to the same large z scaling and so we will not differentiate between them below.

We write

(

p±
)αα̇

= λα
31λ̄

α̇
31,

(

p± + q1

)αα̇
= λα

12λ̄
α̇
12,

(

p± + q2

)αα̇
= λα

24λ̄
α̇
24 (4.10)

At large z, we can choose to decompose the internal momenta so that λ31, λ24, λ̄12 go large5

i.e.

λ31 =
∞
∑

n=−1

λ
(n)
31

zn
, λ̄31 =

∞
∑

n=0

λ̄
(n)
31

zn
,

λ12 =

∞
∑

n=0

λ
(n)
12

zn
, λ̄12 =

∞
∑

n=−1

λ̄
(n)
12

zn
,

λ24 =

∞
∑

n=−1

λ
(n)
24

zn
, λ̄24 =

∞
∑

n=0

λ̄
(n)
24

zn
.

(4.11)

Momentum conservation gives us important constraints

λ
(−1)
31 = λ

(−1)
24 = λ

(0)
12 ,

λ̄
(0)
31 = λ̄

(0)
24 = λ̄

(−1)
12 .

(4.12)

5Recall that for any decomposition pαα̇ = λαλ̄α̇ of a momentum vector p, we also have the decomposition

pαα̇ = (αλα) λ̄
α̇

α
for any complex number α. For internal momenta we can choose whatever α we want since

this scaling always cancels out in the final answer.
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We are now ready to prove our result. First, we make a change of variables in (4.9)

η31 → η31 + η12z, η24 → η24 + η12z, (4.13)

with Jacobian equal to 1. The first two tree amplitudes in (4.9) vanish as O
(

1
z

)

by the anal-

ysis above. We now make a supersymmetry transformation, on the third tree amplitude,

with parameter

ζ =
(η24 + η12z)λ31 − (η31 + η12z)λ24

〈λ24, λ31〉
. (4.14)

Note that this has the large z expansion ζ −−−→
z→∞

O(1)+ O
(

1
z

)

by (4.11), (4.12). The third

tree amplitude now becomes

At({0, λ24, λ̄24}, {0, λ31,−λ̄31}, . . .) =
(

ǫ−31
)

µ
Aµν

(

ǫ−24
)

ν
, (4.15)

where the two ǫ’s are negative helicity polarization vectors that we can choose to be

(

ǫ−31
)αα̇

=
λα

31µ̄
α̇

[λ̄31, µ̄]
,

(

ǫ−12
)αα̇

=
λα

12µ̄
α̇

[λ̄12, µ̄]
. (4.16)

From the general principles explained in [21],

Aµν −−−→
z→∞

(O(z) + · · · ) ηµν + (O(1) + · · · )Bµν +

(

O

(

1

z

)

+ · · ·
)

Cµν , (4.17)

where Bµν is an anti-symmetric tensor and Cµν is some other tensor.

It is now easy to check using (4.12), (4.16), (4.17) that the third amplitude grows as

O(z). However, this means that

C±
α3

−−−→
z→∞

O

(

1

z

)

. (4.18)

As we explained in subsection 3.3.2, to find the triangle coefficients, we first need to

subtract off the contributions to Cα3 from the box diagrams. The difference between the

pure cut and the contribution from the boxes — that we denote by C′
α3 — must be a

polynomial of order 3 in z. In the N = 4 theory, the argument above tells us that the

cut itself cannot give any contribution to this polynomial. Thus the only non-vanishing

contribution must come, as a remainder, from the higher order terms. The box with an

insertion of p · k in the numerator gives a non-vanishing contribution to Cα3 even in the

limit of large z. So, we must have

C′
α3 = − lim

z→∞

∑

±

R±
α3

= B(0)
α3

, (4.19)

with no dependence of z whatsoever! So we see that one triangle coefficient is non-zero

even for the N = 4 theory but that it is completely determined by the box coefficients.

A very similar analysis shows us that

C2(ω) −−−→
z→∞

O

(

1

z

)

(4.20)
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However, this time, in the large z limit there is no O(1) remainder from the triangles.

Note that such a remainder would have existed had the coefficient B
(m)
α3 , for m > 0 been

non-zero. Since this is not the case, from our analysis above, the bubble coefficients must

all be zero.

Thus, we see that in our choice of basis, any one loop amplitude in the noncommutative

N = 4 theory may be written in terms of the two boxes shown in table 1 and the first

triangle on the third line of table 1. The coefficient of this triangle is completely dictated

by the box coefficients. In contrast, in the ordinary N = 4 theory — and in the planar

sector of the noncommutative theory — we can write all amplitudes in terms of the scalar

box shown in the first line of table 1. In a very rough sense, the non-planar sector of the

noncommutative theory is about ‘twice’ as complicated as the ordinary theory! We will

verify this structure in an example in section 5.

An interesting implication follows automatically from our result. From our general

analysis of non-planar loop diagrams in section 3.1.2, we can take a smooth θ → 0 limit for

the box and triangle integrals that appear in the expansion of the N = 4 theory. Hence,

the θ → 0 limit of any S-matrix element in the noncommutative N = 4 theory gives us the

corresponding S-matrix element in the ordinary theory.6 This is the statement that there

is no UV-IR mixing in the N = 4 SYM theory (see [11] and references there).

4.4 Problematizing simplicity

As we have explained above, the S-matrix of the noncommutative N = 4 theory is struc-

turally simple, in that only boxes and triangles (whose coefficients are controlled by the

boxes) appear in the one-loop S-matrix of this theory. On the surface this would make it

seem that N = 4 SYM has a simpler S matrix than its non-supersymmetric cousin; this

was emphasized in [8].

However, does this mean that, computationally, the scattering matrix of N = 4 is the

easiest to obtain? For example, let us say we are calculating gluon scattering at one-loop in

a non-supersymmetric theory and in the N = 4 theory. Does the use of on-shell techniques

make the N = 4 calculation easier than the non-supersymmetric calculation? Let us

consider the growth of computational complexity with an increasing number of external

legs. For simplicity, we will consider planar amplitudes in an ordinary gauge theory but

our qualitative conclusions are equally valid for both planar and non-planar amplitudes in

the noncommutative theory.

A planar color-ordered amplitude, with n external legs, receives contributions from
(n−3)(n−2)(n−1)

6 boxes, (n−2)(n−1)
2 triangles and n − 1 bubbles. Thus, for large n, most of

the work is required to compute the different box coefficients.

Now, for any box coefficient, we need to compute the product of 3 tree amplitudes and

sum over all states that can run in the loop. How does the difficulty of computing a tree

amplitude in N = 4 SYM compare with the ordinary theory?

If we naively compare the non-supersymmetric recursion relations (2.8) with their

supersymmetric cousins, we would come to the conclusion that tree amplitudes in N = 4

6Note that while the θ → 0 limit of the S-matrix itself is smooth, by taking enough derivatives of the

S-matrix with respect to θ, one can always arrange for a discontinuity at θ = 0.
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SYM are much harder to compute. Each time we cut the amplitude into two parts, we

need to sum over 16 intermediate states in the supersymmetric theory as opposed to 2 in

the ordinary theory. Now, the total computational complexity in computing a n point tree

amplitude using the BCFW recursion relations, satisfies the recursion relation

N(n) = 2g

n−2
∑

j=2

N(j + 1), (4.21)

where g is the number of intermediate particles that we need to sum over at each cut i.e.

g = 2 for a pure gauge theory and g = 16 for the N = 4 SYM theory. If we set N(3) = 1

then for n > 3, we have

N(n) = 2g (2g + 1)(n−4) , n ≥ 4, (4.22)

In some cases, this formula badly overestimates the complexity of a scattering ampli-

tude in the supersymmetric theory. For example, tree level gluon scattering amplitudes in

the supersymmetric theory are exactly the same as in the non-supersymmetric theory.

We do not know how the optimal algorithm for calculating tree amplitudes in N = 4

SYM compares with the optimal algorithm for the non-supersymmetric theory. However,

it is safe to say that the computation of tree amplitudes in the supersymmetric theory is

always at least as difficult as the non-supersymmetric theory.

Even after this concession, we find that in the supersymmetric theory, to calculate the

4-cut, we need to sum over the entire N = 4 multiplet, which contains 16 states, for every

cut line. Once again, barring exceptional cases, we always need to do more work for the

supersymmetric theory.

Thus while, for some simple scattering amplitudes involving a small number of ex-

ternal particles, the S-matrix of N = 4 SYM might look simpler than that of the non-

supersymmetric theory it is, in fact, computationally far more difficult to obtain for a large

number of external particles.

We see then, that while the S-matrix of N = 4 SYM is structurally simple, this

criterion is mostly aesthetic. From a computational point of view, it still requires more

work to compute one-loop scattering in N = 4 SYM.

5 Examples

We now consider some examples to elucidate the ideas that we have described above.

We would like to stress that the methods that we have outlined make the calculation of

scattering amplitudes very simple. For comparison, we invite the reader to compare our

calculations in subsection 5.2 with the usual Feynman diagram calculations for noncom-

mutative N = 4 SYM [47].

In our calculations below, we will often draw schematic diagrams of boxes, triangles and

bubbles. These diagrams should not be understood to be Feynman diagrams in any sense.

They are merely mnemonics that we use to read off the trace structure and intermediate

on-shell conditions when we make cuts.
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p12

1

2 3

4

p43

p31

p24

Figure 3. Box: 4-pt YM amplitude.

In this section, we will drop overall factors of the coupling constant except in subsec-

tion 5.1.4, where we derive the β function of Yang-Mills theory.

5.1 Noncommutative pure YM: 2 → 2 scattering

We start with a 2 → 2 scattering amplitude in a U(N) noncommutative gauge theory. This

amplitude has a color decomposition, at one-loop, given by (3.1). We will work out the

coefficient of the Tr(T 1T 2)Tr(T 3T 4) term, where T i is the color-generator associated with

particle i.

For convenience, we choose the following initial momenta.

k1 = (1, 1, 0, 0), k2 = (−1, 1, 0, 0),

k3 = (− cosh φ,−1, 0,− sinh φ), k4 = (cosh φ,−1, 0, sinh φ).
(5.1)

We will denote x ≡ e
φ
2 . We also choose the external helicities to be h1 = h3 = 1, h2 =

h4 = −1. Writing piσ
µ
αα̇ = (λi)α

(

λ̄i

)

α̇
, with the Minkowski space condition λ∗

i = ±λ̄i, we

find the following spinor decomposition of the momenta:

λ1 = (1, 1), λ̄1 = (1, 1); λ2 = (i,−i), λ̄2 = (i,−i);

λ3 = i(x, 1/x), λ̄3 = i(x, 1/x); λ4 = (x,−1/x), λ̄4 = (x,−1/x).
(5.2)

Notice that our choice of basis leads to the nice property that λi = λ̄i. This will simplify

our calculations a bit below.

We will take θ23 = −θ32 = 1
2 and all other components to be zero. Equation (3.4) gives

us k = (0, 0, 1, 0).

5.1.1 Box

For a four-point amplitude, there is a unique partition of the external momenta that can

lead to a box and give us the trace structure we want. This is shown schematically in

figure 3.
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2 1

p24
p31

p43

3 4

Figure 4. Triangle 1: 4-pt YM amplitude.

The internal momenta pij that go on shell when we make a four-cut are shown below.7

p31 p12 p24 p43

p+ 2ix
x2+1λ1λ̄3 ix2−1

x2+1λ1λ̄2
2ix

1+x2 λ4λ̄2 i1−x2

1+x2 λ4λ̄3

p− 2ix
x2+1

λ3λ̄1 ix2−1
x2+1

λ2λ̄1
2ix

1+x2 λ2λ̄4 i1−x2

1+x2 λ3λ̄4

Using (3.13), we find

C+
1 = C−

1 =

(

x2 − 1
)4

x4
. (5.3)

This gives us

A
(0)
1 =

(

x2 − 1
)4

x4
, A

(1)
1 = 0. (5.4)

We always need to consider at least 5 particles to get a non-zero A
(1)
α4 . We will see an

example of this in subsection 5.2.

5.1.2 Triangles

If we want 1, 2 and 3, 4 to appear in distinct traces, only two triangle diagrams are pos-

sible. One is where 1, 2 meet at a vertex and the other is where 3, 4 meet at a vertex.

Schematically, these two diagrams are shown in figures 4 and 5.

7Note that, in general the momenta pij are complex. As a result, there is no canonical choice of scaling

for their decomposition into spinors. In fact, for each internal momenta, we can choose a convenient scaling

because that does not appear in the final answer.
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p31

1 2

3

p12

4

p24

Figure 5. Triangle 2: 4-pt YM amplitude.

1. Triangle 1: The first triangle is shown in figure 4. The two internal momenta are

obtained by solving (3.16).

p31 p24 p43

p+ (zλ4 + λ3)λ̄3 λ4(zλ̄3 − λ̄4) zλ4λ̄3

p− λ3(−zλ̄4 + λ̄3) (−zλ3 − λ4)λ̄4 −zλ3λ̄4

We find that

C+
1 = −

(

x2 − 1
)3

x2 ((x2 − 1) − i (x2 + 1) z)
,

C−
1 = −

(

i(x2 + 1)z + (x2 − 1)
)4

+ (x2 + 1)4z4

x2 (x2 − 1) ((x2 − 1) + i (x2 + 1) z)
.

(5.5)

After subtracting off the remainder from the box terms, as in (3.19), we find

C′
1 =

i
(

x2 + 1
)

z
(

−2
(

x2 − 1
)2 − i

(

x4 − 1
)

z +
(

x2 + 1
)2

z2
)

x2 (x2 − 1)
. (5.6)

It is quite remarkable that this term is a polynomial of order 3 in z but that is exactly

what we expect from our general analysis. From here, we can read off

B
(0)
1 = 0,

B
(1)
1 = −2i

(

x2 − 1
) (

x2 + 1
)

x2
,

B
(2)
1 =

(

x2 + 1
)2

x2
,

B
(3)
1 =

i
(

x2 + 1
)3

x2 (x2 − 1)
.

(5.7)
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2. Triangle 2: We now turn to the second triangle diagram shown in 5. Here the

solutions to (3.16) are

p31 p12 p24

p+ λ1(−zλ̄2 − λ̄1) −zλ1λ̄2 (−zλ1 + λ2)λ̄2

p− (−zλ2 − λ1)λ̄1 −zλ2λ̄1 λ2(−zλ̄1 + λ̄2)

We find that

C+
2 = −

(

−i(x2 + 1)z + (x2 − 1)
)4

+ (x2 + 1)4z4

x2 (x2 − 1) ((x2 − 1) − i (x2 + 1) z)
,

C−
2 = −

(

x2 − 1
)3

x2 ((x2 − 1) − i (x2 + 1) z)
.

(5.8)

This leads to

C′
2 =

−2i
(

x2 + 1
)

z
(

−2
(

x2 − 1
)2

+ i
(

x4 − 1
)

z +
(

x2 + 1
)2

z2
)

x2 (x2 − 1)
. (5.9)

From here, we can read off

B
(0)
2 = 0,

B
(1)
2 = +

2i
(

x2 − 1
) (

x2 + 1
)

x2
,

B
(2)
2 =

(

x2 + 1
)2

x2
,

B
(3)
2 =

−i
(

x2 + 1
)3

x2 (x2 − 1)
.

(5.10)

5.1.3 Bubble

There is a single bubble diagram with 1–2 meeting at a vertex and 3–4 meeting at another

vertex. This is shown schematically in figure 6 We can choose the vectors w1, w2, described

1

2
3

4

p

p + k1 + k2

Figure 6. Bubble: 4-pt YM amplitude.
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in subsection 3.3.3, to be

w1 = (1, 0, 0, 0), w2 = (0, 0, 0, i). (5.11)

The solutions to (3.21) become

p(ω) =
(
√

z2 + 1cos θ,−1, z, i
√

z2 + 1 sin θ
)

. (5.12)

Here we have introduced an additional variable θ, with ω ≡ eiθ as explained in subsec-

tion 3.3.3. The expressions for the intermediate calculations are lengthy, so we just provide

the final answer which is

1

4πi

∮

ω=∞

dω

ω

[

C′(ω) + C′ (1/ω)
]

= −−3
(

3x4 − 4x2 + 3
)

+ 8i
(

x2 + 1
)2

z +
(

7x4 + 16x2 + 7
)

z2

8x2
.

(5.13)

From here we can read off

C(0) =
1

2

(

9x2

4
− 3 +

9

4x2

)

,

C(1) = 0,

C(2) =
−7x4 − 16x2 − 7

8x2
.

(5.14)

5.1.4 Beta function

In the spirit of [8], we can perform an interesting check on the calculation we have done so

far. The idea is as follows. If we combine (2.1) and (3.1), we find that the complete 1-loop

amplitude for any scattering process has the decomposition

A1ℓ + At =
∑

π∈Sn/Zn

(

At
π + NAp

π

)

Tr (T aπ(1) . . . T aπ(n)) + · · · , (5.15)

where the . . . denote the non-planar terms. In a massless gauge theory, the amplitude

above has both UV and IR divergences. We have been working in 4 + 2ǫ dimensions,

but we can trade the dimensional parameter with a running scale Λ by performing a

MS renormalization −1

ǫ
− γ + log(4π) → log Λ2. (5.16)

. The scattering amplitude (5.15) now acquires a dependence on Λ through the coupling

constant and loop integrals and by demanding

Λ
d
(

At
π + NAp

π

)

dΛ
= 0, (5.17)

we can derive the usual RG equation for the coupling constant. Note that this entire

process never makes any reference to off-shell information! Second, the nonplanar terms

in (5.15) do not interfere with the planar terms in (5.17) because the coefficient of each

trace must vanish separately at leading order.
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Although we have been considering non-planar amplitudes, we can extract the RG

equation from our calculations too. This is because the one loop integral coefficients that

we have calculated are closely related to the loop-coefficients of the planar subamplitude

Ap (1, 2, 4, 3) in an ordinary gauge theory (notice the reversal of the order of 3 and 4). As

explained in subsection 3.4, we can obtain the loop-coefficients of an ordinary theory by

using the noncommutative calculations as an intermediate crutch. Now, the planar subam-

plitude in the ordinary theory, at one-loop, also receives contributions from other possible

partitions of the external momenta. However, it is easy to check that, with our choice of

helicities, these other partitions never contribute to any ultra-violet divergent terms!

The ultra-violet divergent terms come from the first and third bubble diagrams and

the third triangle diagram in table 1. The coefficient of 1
ǫ , that we call κ, is

32π2iκ = 2C(0) − (k1 + k2)
2 k2 C(2)

6
+
(

B
(2)
1 + B

(2)
2

) k2

2
=

11

3

(

x2

2
+

1

2x2
− 1

)

, (5.18)

whereas the tree level amplitude is given by

At (k1, k2, k4, k3) =
1

2
− 1

4x2
− x2

4
. (5.19)

If we substitute this into (5.17), and restore factors of the YM coupling constant g, we find

dg2

d ln Λ
=

−22N

3

g4

16π2
+ · · · , (5.20)

which is the famous RG equation for Yang-Mills theory!

5.2 Noncommutative N = 4 SYM: 2 → 3 scattering

Now, we turn to an example of 2 → 3 scattering in noncommutative N = 4 SYM. For

convenience, we take the external momenta to be

k1 = (4, 4, 0, 0) , k2 = (3, 0, 3, 0) , k3 = (−1, 0,− sin θ,− cos θ)

k4 = (−1, 0, sin θ, cos θ, ) , k5 = (−5,−4,−3, 0)
(5.21)

We will consider the scattering of external gluons with helicity h1 = h2 = −1; h3 =

h4 = h5 = 1. We will work with x = e
iθ
2 . We are interested in the coefficient of

Tr
(

T 1T 2
)

Tr
(

T 3T 4T 5
)

in (3.1). We choose θ42 = −θ24 = −1
4 (and all other components

zero) so that k = (0, 0, 0, 1).

5.2.1 Boxes

There are 3 box diagrams that contribute to the part of the amplitude we wish to calculate.

We discuss each in turn.

1. Box 1

The first box diagram is shown in figure 7.
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Figure 7. Box 1: 5-pt SYM amplitude.

There are two possibilities for the momenta to go on shell. These are

p+
34 = −〈λ4, λ5〉

〈λ3, λ5〉
λ3λ̄4,

p−34 = −
[

λ̄4, λ̄5

]

[

λ̄3, λ̄5

]λ4λ̄3.

(5.22)

Using (4.8), we find

C+
1 = 24

(

4

5
− 3i

5

)

(

1 − 3ix2
)

,

C−
1 = 0.

(5.23)

Note, that in terms of

At (2, 1, 3, 4, 5) =
(〈λ2, λ1〉)3

〈λ1, λ3〉〈λ3, λ4〉〈λ4, λ5〉〈λ5, λ2〉

=
6i

5

(4 − 3i) x2

3 − ix2
,

(5.24)

we have

C+
1 = −At(2, 1, 3, 4, 5) (k5 + k4)

2 (k3 + k4)
2 . (5.25)

This is in complete accordance with [48]. However, our example differs from the

one considered there in two important respects. First, since we are considering the

non-planar amplitude, the tree level amplitude that appears in (5.24) is ordered by

(2, 1, 3, 4, 5). This switch between the order of 2 and 1 also leads to the additional

minus sign in (5.25). Solving (3.14), we find

A
(0)
1 = 3

(

4

5
− 3i

5

)

(

x4 + 9
) (

1 − 3ix2
)

1 − x4
,

A
(1)
1 = −3

(

3

4
+

4i

5

)

(

3 + ix2
) (

9x4 + 1
)

1 − x4
.

(5.26)
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Figure 8. Box 2: 5-pt SYM amplitude.
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Figure 9. Box 3: 5-pt SYM amplitude.

2. Box 2

As mentioned above, there are two other boxes. For the box show in figure 8, the cut

momenta can be

p+
21 =

〈λ2, λ5〉
〈λ1, λ5〉

λ1λ̄2,

p−21 =

[

λ̄2, λ̄5

]

[

λ̄1, λ̄5

]λ2λ̄1.

(5.27)

Using the momenta above, we find

C+
2 =

1728(3 + 4i)

5

x2

3 − ix2
,

C−
2 = 0.

(5.28)

which gives us

A
(0)
2 = 864

3 + 4i

5

x2

3 − ix2
,

A
(1)
2 = 288

3i − 4

5

x2

3 − ix2
.

(5.29)

3. Box 3

Finally, we come to the third box diagram that is shown in figure 9. For this diagram,

we have

A
(0)
3 = 1152

3i − 4

5

x4

(3 − ix2) (1 + ix2)
,

A
(1)
3 = 288

3i − 4

5

x2

3 − ix2
.

(5.30)

– 30 –



J
H
E
P
0
6
(
2
0
0
9
)
0
0
5

p45

12

4

3

5

p52
p13

Figure 10. Triangle 1: 5-pt SYM amplitude.

5.2.2 Triangles

As we have already explained, the triangle coefficients are completely controlled by the

box coefficients. However, for this example, we will verify this explicitly. There are three

triangle diagrams.

1. Triangle 1

The first is shown in figure 10. The two momenta that go on shell are

p+
45 = λ5λ̄, λ̄ =

(

i√
5

(z + 1) ,
3 + 4i

5
√

5
(1 − z)

)

,

p−45 = λλ̄5, λ =

(

i√
5

(z + 1) ,
3 − 4i

5
√

5
(z − 1)

)

.

(5.31)

We find that

C+
1 = 240

x2z (3 + 4i)

(z − 3i) (3 − ix2) [(z − 3i) x2 − 3iz + 1]
,

C−
1 = 0.

(5.32)

The first point to notice is that C+
1 goes like O

(

1
z

)

for large z which is precisely in

accordance with our expectations. However, we would also like to verify that after

we have added in the contribution to this cut from the box coefficients we are left

with a constant with no dependence on z. We find that

C′
1 = 15

(3 + 4i) x2
(

x4 + 1
)

(3 − ix2) (x4 − 1)
. (5.33)

Remarkably, we see that the remainder from the boxes has precisely canceled off the

dependence on z in the expression (5.32). From here, we can read off

B
(0)
1 = 15

(3 + 4i) x2
(

x4 + 1
)

(3 − ix2) (x4 − 1)
,

B
(1)
1 = 0, B

(2)
1 = 0 B

(3)
1 = 0.

(5.34)
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Figure 12. Triangle 3: 5-pt SYM amplitude.

2. Triangle 2

An almost identical calculation can be repeated for the triangle shown in figure 11 .

We find that

B
(0)
2 =

−72 (3 + 4i)

5

x2
(

1 − ix2
)

(3 − ix2) (1 + ix2)
,

B
(1)
2 = 0, B

(2)
2 = 0 B

(3)
2 = 0.

(5.35)

3. Triangle 3

There is a third triangle shown in figure 12. For this final triangle, we find that

B
(0)
3 =

3 (4 − 3i)

20

(

1 − ix2
) (

3x4 − 6ix2 − 11
) (

11x4 − 6ix2 − 3
)

(1 − x2) (1 + x2) (1 + ix2) (3 − ix2)
,

B
(1)
3 = 0, B

(2)
3 = 0 B

(3)
3 = 0.

(5.36)

The coefficients C(m) are all zero as we explained in our general analysis in section 4.
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6 Results

Let us briefly recapitulate our results.

1. First, we showed that noncommutative tree level amplitudes could be calculated using

the BCFW recursion relations. This relies on the remarkable fact that color-ordered

amplitudes in noncommutative theories are related to their ordinary counterparts by

a simple and calculable phase. Thus, even though the addition of generic higher order

terms to the Yang-Mills action makes recursion relations intractable, noncommuta-

tive theories — which contain an infinite number of higher derivative terms — are

amenable to recursion relations.

2. Second, we showed that one-loop non-planar amplitudes in noncommutative theories

could also be calculated via on-shell techniques. We showed that any amplitude could

be written as a linear combination of the integrals in table 1, with coefficients that

are rational functions of the external momenta multiplied by a phase that is bilinear

in the external momenta. We showed, in section 3, that these coefficients could be

efficiently extracted by relating them to products of tree amplitudes.

3. We discussed the one-loop S-matrix of the noncommutative N = 4 SYM theory and

found that it was structurally very simple just like the S-matrix of ordinary N = 4

SYM theory. We compared the computational complexity of the supersymmetric

theory with the non-supersymmetric theory in subsection 4.4. From a computational

point of view, the supersymmetric theory is more expensive. At one-loop we found

that any noncommutative non-planar amplitude in N = 4 SYM could be written in

terms of the two kinds of boxes in the first two lines of table 1 and the scalar triangle

on the third line. However, the coefficient of the triangle was completely determined

by the box coefficients.

4. Our method of extracting one-loop integral coefficients provides an efficient technique

of calculating one-loop integral coefficients in ordinary gauge theories. This is similar

to the technique suggested in [31], although our starting point is not an expression

for the one-loop integrand but just the on-shell three point amplitude.

5. In section 5, we worked out an example of 2 → 2 scattering in noncommutative

U(N) YM theory. As part of this calculation we also obtained the β function of

the ordinary U(N) YM theory. We also worked out a 2 → 3 scattering process in

the noncommutative N = 4 SYM theory that confirmed our expectations about the

structure of the S-matrix for this theory. These calculations are much simpler than

the corresponding Feynman diagram calculations.

A natural extension of these ideas would be to understand how well on-shell techniques

work at two loops and higher; of course, it would make sense to understand this for ordinary

theories first! It would also be very interesting to explore whether such techniques can be

used to construct new nonlocal perturbative theories.
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A Reducing integrals

In this appendix, we will show that all non-planar loop integrals that appear in noncommu-

tative theories can be reduced to a set of ‘master integrals’ plus a remainder that contains

no branch cut singularities. Our analysis here is similar in spirit to [31].

The procedure we discuss below is very similar to the process of reducing one-loop in-

tegrals in ordinary theories to boxes, triangles, bubbles and a rational remainder. However,

our result for non-planar amplitudes in noncommutative theories differs from the ordinary

result in important ways.

1. In ordinary theories, all one-loop integrals can be reduced to scalar integrals with

rational coefficients. As we will see, in the noncommutative case, for nonplanar

amplitudes, we will also need to include a limited set of tensor integrals. Moreover,

the coefficients of this basis are not strictly rational since they include phase factors

that are bilinear in the external momenta. These coefficients are, however, free of

branch cut singularities.

2. In ordinary gauge theories, one-loop integrals are both UV and IR divergent and need

to be dimensionally regulated. Rational remainders are obtained when the reduction

process is performed carefully within dimensional regularization [16].

Non-planar one-loop amplitudes, in a noncommutative gauge theory, have only

IR divergences. We will show that these divergences do not cause any subtleties

in the reduction process. The 4 dimensional answer is not modified in dimen-

sional regularization.

3. Nevertheless, even in the non-planar case, we obtain a remainder that is free of any

branch cut singularities. This remainder comes from tadpole graphs that can be

ignored in the ordinary theory but not in the noncommutative theory.

Our analysis below is divided into three parts. First, we will show that, in 4 dimensions,

any integrand that appears in a non-planar one-loop integral may be written as a sum of

terms with at most four propagator factors. This is merely an elaborate process of partial

fractions. Second, we will show all non-planar integrals can be further reduced to the set

of master integrals indicated in table 1. Finally, we will demonstrate that dimensional

regularization does not affect our answer.
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A.1 Four dimensional reduction

In a noncommutative theory, we expect the generic one loop non-planar amplitude to be a

sum over integrals of the form

Anp =
∑

γα

∫

Tα
{r,m}e

ik·p d4+2ǫp

(2π)4+2ǫ
, (A.1)

where

Tα
{r,m} =

∏m
j=1 2(p · aj)

∏r−1
i=0 (p + qi)2

. (A.2)

Note that we have explicitly displayed the dependence of Tα
{r,m} on the number of propa-

gator factors r and the number of insertions of p in the numerator, m. Tα
{r,m} also depends

on the vectors ai and qi but we have packaged that dependence in α. The γα are some

coefficients independent of p. We can always choose a gauge so that m ≤ r in (A.2) and

for simplicity we will assume this below.

In this subsection, we will assume that the internal momentum p is kept in four di-

mensions; this is acceptable since our statements below mostly regard partial fractions.

Since we will not deal with integrals in this subsection, we have also dropped the pole

prescription in the definition of Tα
{r,m}. We analyze the dimensionally regulated case in

subsection A.2.

A.1.1 Hexagons and higher terms

We start by analyzing terms where the number of propagators in (A.2) is greater than 5.

We assume q0 = 0; the generalization to general q0 is obvious. If q1, q2, q3, q4 are linearly

independent (this is true for generic momenta), we can write,

pµ = Bab(p · qa)q
µ
b . a, b = 1 . . . 4. (A.3)

If m ≥ 1, the numerator contains the term p · a1 and

2(p · a1) =
∑

a,b

2Bab(p · qa)(qb · a1)

=
∑

a,b

Bab

(

(p + qa)
2 − q2

a − p2
)

(qb · a1).
(A.4)

Inserting this identity into the expression (A.2), we find

Tα
{r,m} =

∑

β

κ
{r,m}
α,β T β

{r−1,m−1}, (m > 1), (A.5)

where the κ are some coefficients.

If m = 0, we choose a non-lightlike q, say q5 and write

1 =
1

q2
5

(

(p + q5)
2 − p2 − 2(p · q5)

)

. (A.6)
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Inserting this identity into (A.2) and repeating the procedure above, we find

Tα
{r,0} =

∑

β

κ
{r,0}
α,β T β

{r−1,0}, (A.7)

where the κ are some coefficients.

We can iterate this process till we reach terms with 5 or fewer propagator factors.

A.1.2 Pentagons

For pentagons, which have 5 propagators, if m > 0, we can once again use (A.3) and (A.4)

to reduce the order of the denominator. If m = 0, we write

p2 = 4(p · qa)Aab(p · qb), a, b = 1 . . . 4 (A.8)

where the matrix Aab depends only on the q and not on p which implies that

p2 =
(

(p + qa)
2 − p2 − q2

a

)

Aab

(

(p + qb)
2 − p2 − q2

b

)

, (A.9)

or

q2
aAabq

2
b = −

(

(p + qa)
2 − p2

)

Aab

(

(p + qb)
2 − p2

)

+ p2. (A.10)

Inserting this in (A.2), we find an identity of the form

Tα
{5,0} =

∑

β

(

κ
{5,0}
α,β T β

{4,0} + κ
′{5,0}
α,β T β

{4,2}

)

. (A.11)

where the κ, κ′ are some coefficients.

A.1.3 Boxes and lower terms

In this subsection, we turn to terms where the number of propagators is 4 or lower. We

consider boxes, triangles and bubbles in turn.

Boxes have 4 propagators. In place of q4, we now use k. Of course, we cannot use a

p · k term in the numerator to reduce the order of the denominator by 1. However, using

the identity,

(p · k)2 = #p2 + (p · k)#j(p · qj) + #ij(p · qi)(p · qj), i, j = 1 . . . 3 (A.12)

where # are some coefficients, we can ensure that terms quadratic and higher in p ·k never

appear in the numerator.

We now turn to triangles and bubbles. Our objective is to reorganize these terms into

a set of ‘physical’ terms and a set of ‘spurious’ terms that vanish when we consider the

integral (A.1).

To reduce triangles, which comprise terms of the form Tα
{3,m}, we introduce an auxiliary

vector vα, such that vα · qi = vα · k = 0. where i = 1, 2. Any 4-vector may be decomposed

in terms of k, qi, v
α. We still need an identity like (A.12), except we use it to reduce powers

of (p · vα) to at most linear order. Note the α superscript on vα which serves to remind us

that vα depends on qi.
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The procedure for reducing bubbles is similar, except we need to introduce two vectors

wα
1 and wα

2 with the property that wα
i · q1 = wα

i ·k = 0; wα
i ·wα

j = δij (where i, j range over

1, 2). For bubbles, in any case, we can only have up to two insertions of p in the numerator.

Furthermore, by symmetry we must have (for some coefficients #i)

p2 = #1(p · k)2 + #2(p · q1)
2 + #3(p · k)(p · q1) + #4

(

(p · wα
1 )2 + (p · wα

2 )2
)

. (A.13)

We can use this identity to systematically eliminate the combination (p · wα
1 )2 + (p · wα

2 )2

leaving behind only (p · wα
1 )2 − (p · wα

2 )2.

To summarize, we have shown that for any fraction of the form T{r,m}

Tα
{r,m} =

∑

β

(

cβ
4,0 + cβ

4,1(p · k)
)

T β
{4,0}

+
[

cβ
3,0

(

1 + dβ
1 (p · vβ)

)

+ cβ
3,1(p · k)

(

1 + dβ
2 (p · vβ)

)

+ cβ
3,2(p · k)2

(

1 + dβ
3 (p · vβ)

)

+ cβ
3,3(p · k)3

(

1 + dβ
4 (p · vβ)

) ]

T β
{3,0}

+ T β
{2,0}

[

cβ
2,0

(

1 + eβ
0 (p · wβ

1 ) + fβ
0 (p · wβ

2 )

+gβ
0

(

(p · wβ
1 )2 − (p · wβ

2 )2
)

+ hβ
0 (p · wβ

1 )(p · wβ
2 )
)

+ cβ
2,1(p · k)

(

1 + eβ
1 (p · wβ

1 ) + fβ
1 (p · wβ

2 )

+gβ
1

(

(p · wβ
1 )2 − (p · wβ

2 )2
)

+ hβ
1 (p · wβ

1 )(p · wβ
2 )
)

+ cβ
2,2(p · k)2

(

1 + eβ
2 (p · wβ

1 ) + fβ
2 (p · wβ

2 )

+gβ
2

(

(p · wβ
1 )2 − (p · wβ

2 )2
)

+ hβ
2 (p · wβ

1 )(p · wβ
2 )
) ]

+ iα1 T{1,0} + iα2 T{1,1} + iα3 T{0,0},

(A.14)

where the c, d, e, f, g, h, i are some coefficients. So far this is only a statement about partial

fractions in 4 dimensions.

In quantum field theory we are interested in loop-integrals. It is easy to see, that when

we consider the integral in (A.1), all the terms in (A.14) that are multiplied by d, e, f, g, h

vanish by symmetry.

A.1.4 Tadpoles

Finally, consider the tadpole terms on the last line. Apart from a delta function in k

coming from the term T{0,0} that we can neglect, we have an integral of the form

∫

T{1,0}e
ik·p =

∫

eik·p

p2 + iǫ

d4p

(2π)4
=

1

4π2k2
. (A.15)

Hence, the terms on the last line give integrate to give us terms that are free of branch cut

singularities. These rational terms were discussed in [17, 18]
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A.1.5 Conclusion

We will show in the next subsection that the conclusions of the previous subsections are

unaffected when we work within dimensional regularization. This leaves us with the result

that any noncommutative non-planar one-loop amplitude may be written as

Anp
j;π =

∑

α4

∫
∑1

m=0 A
(m)
α4 (p · k)meip·k

∏3
i=0 [(p + qα4

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+
∑

α3

∫
∑3

m=0 B
(m)
α3 (p · k)meip·k

∏2
i=0 [(p + qα3

i )2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+

∫
∑2

m=0 C(m)(p · k)meip·k

∏1
i=0 [(p + qi)2 + iǫ]

d4+2ǫp

(2π)4+2ǫ

+ R + O (ǫ) ,

(A.16)

where R is a remainder with no branch cut singularities, as explained above. The equation

above is true as a power series in ǫ up to and including terms of O(ǫ0). We will now justify

this statement.

A.2 Dimensional regularization

Noncommutative non-planar one-loop amplitudes suffer from IR-divergences. To regulate

the theory, we work within dimensional regularization. It is convenient to break up the

loop momentum into a four dimensional part and a 2ǫ dimensional part [4, 49] (see also [50]

and references there)

pd = p4 + µ2ǫ, (A.17)

where d = 4 + 2ǫ. In the four dimensional helicity scheme [25], the external momenta and

polarization vectors are always kept in 4 dimensions. Thus, if qi, aj are external vectors

(pd + qi)
2 = p2

4 + 2p4 · qi + q2
i + µ2

2ǫ

pd · aj = p4 · aj

(A.18)

To lighten the notation, we will now drop the 2ǫ subscript under µ.

It is evident, that in this scheme, the calculation of subsection A.1.1 go through without

change. However, if we redo the calculations of subsection A.1.2 and A.1.3 carefully we find

that (apart from ‘spurious terms’ that integrate to zero by symmetry) we get additional

terms of the form
µ2j(p4 · k)j1

∏r
i=0 [(p + qi)2 + iǫ]

,

where r ≤ 4. The integral over all such terms can be obtained from the integral

IR = i

∫

µ2jeiαk·p4

∏r
i=0 [(p4 + qi)2 − µ2 + iǫ]

d4p4

(2π)4
d2ǫµ

(2π)2ǫ
, (A.19)
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by taking derivatives with respect to α and then setting α = 1. After combining denomi-

nators using Feynman parameters and Wick rotating, we find the integral is

IR =
(−1)r

(2π)4+2ǫ

∫

dxF d4p d2ǫµ
µ2jeiαp′E ·k

(p2
E + ∆0 + µ2)r+1

=
(−1)r

(2π)4+2ǫΓ(r + 1)

∫

dxF d4p d2ǫ µdβ
[

µ2jeiαp′E ·k−β(p2
E+∆0+µ2)βr

]

=
(−1)rπǫ

(2π)4+2ǫΓ(r + 1)Γ(ǫ)

∫

dxF d4p d(µ2) dβ
[

(µ2)j+ǫ−1eiαp′E ·k−β(p2
E+∆0+µ2)βr

]

,

(A.20)

where we have introduced the notation

∆0 = −
∑

i

q2
i xi +

(

∑

i

qixi

)2

,

dxF =
∏

dxiδ
(

1 −
∑

xi

)

, p′E = pE −
∑

qixi.

(A.21)

We now do the integral over µ, pE , β in that order.

IR =
(−1)rΓ(j + ǫ)πǫ

(2π)4+2ǫΓ(r + 1)Γ(ǫ)

∫

dxF d4p dβ
[

eiαp′E ·k−β(p2
E+∆0)βr−j−ǫ

]

=
(−1)rΓ(j + ǫ)π2+ǫ

(2π)4+2ǫΓ(r + 1)Γ(ǫ)

∫

dxF dβ

[

e
α2k2

4β
−β∆0βr−2−j−ǫe−iα

P

xiqi·k

]

=
(−1)rΓ(j + ǫ)

2r−j(2π)2+ǫΓ(r + 1)Γ(ǫ)

∫

dxF





(α|k|)r0

∆
r0
2

0

Kr0(α|k|
√

∆0)e
−iα

P

xiqi·k



 ,

(A.22)

where r0 = r − j − 1 − ǫ and |k| =
√
−k2 (recall that the dot product is taken with the

Lorentzian metric, so |k| is always real). It is easy to check that for j = 0, α = 1, the

answer in (A.22) reduces to (3.8).

If we use the small parameter expansion Kr0(x) ∼ 2|r0|−1Γ(|r0|)

x|r0|
, x ≪ 1 it is possible to

check that the integral over the Feynman parameters has no 1
ǫ pole for j ≥ 1. Hence, the

prefactor 1
Γ(ǫ) multiplying the integral ensures that it vanishes in the limit ǫ → 0. When

we differentiate with respect to α, we use

∂

∂α
Kr0

(

αk
√

∆
)

=
−k

√
∆

2

(

Kr0+1

(

αk
√

∆
)

+ Kr0−1

(

αk
√

∆
))

. (A.23)

So, even derivatives of (A.19) with respect to α vanish in the limit ǫ → 0, which proves

our result.
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